Sequential Sampling in Noisy Multi-Objective Evolutionary Optimization
نویسنده
چکیده
Most real-world optimization problems behave stochastically. Evolutionary optimization algorithms have to cope with the uncertainty in order to not loose a substantial part of their performance. There are different types of uncertainty and this thesis studies the type that is commonly known as noise and the use of resampling techniques as countermeasure in multi-objective evolutionary optimization. Several different types of resampling techniques have been proposed in the literature. The available techniques vary in adaptiveness, type of information they base their budget decisions on and in complexity. The results of this thesis show that their performance is not necessarily increasing as soon as they are more complex and that their performance is dependent on optimization problem and environment parameters. As the sampling budget or the noise level increases the optimal resampling technique varies. One result of this thesis is that at low computing budgets or low noise strength simple techniques perform better than complex techniques but as soon as more budget is available or as soon as the algorithm faces more noise complex techniques can show their strengths. This thesis evaluates the resampling techniques on standard benchmark functions. Based on these experiences insights have been gained for the use of resampling techniques in evolutionary simulation optimization of real-world problems.
منابع مشابه
Noisy evolutionary optimization algorithms - A comprehensive survey
Noisy optimization is currently receiving increasing popularity for its widespread applications in engineering optimization problems, where the objective functions are often found to be contaminated with noisy sensory measurements. In absence of knowledge of the noise-statistics, discriminating better trial solutions from the rest becomes difficult in the “selection” step of an evolutionary opt...
متن کاملCombining Reliability and Pareto Optimality - An Approach Using Stochastic Multi- Objective Genetic Algorithms
Genetic Algorithms have been successfully applied to numerous water resources problems, including problems with multiple objectives or uncertainty (noise). GAs tackle multi-objective optimization by following three basic principles – advancing the non-dominated frontier; maintaining diversity in the population (through various techniques like sharing, niching, and crowding); and using an elitis...
متن کاملAn Approach to Reducing Overfitting in FCM with Evolutionary Optimization
Fuzzy clustering methods are conveniently employed in constructing a fuzzy model of a system, but they need to tune some parameters. In this research, FCM is chosen for fuzzy clustering. Parameters such as the number of clusters and the value of fuzzifier significantly influence the extent of generalization of the fuzzy model. These two parameters require tuning to reduce the overfitting in the...
متن کاملMulti-objective Optimization of Problems with Epistemic Uncertainty
Multi-objective evolutionary algorithms (MOEAs) have proven to be a powerful tool for global optimization purposes of deterministic problem functions. Yet, in many real-world problems, uncertainty about the correctness of the system model and environmental factors does not allow to determine clear objective values. Stochastic sampling as applied in noisy EAs neglects that this so-called epistem...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009